XQuery Service (Query XML, SQL style joins, and much more)

XQuery is a new query language for XML data. It provides functions for gathering XML from variety of sources including files, URLs, etc and performing SQL style operations on them. One of the most basic yet impressive abilities is the ability to join between multiple documents. For instance, assume that there are two XML documents: a book catalog from Amazon and a similar catalog from Barns and Noble (the XML does not have to follow the same schema, in this example one retailer uses the “book” element for each book in the catalog while another uses “entry”). The following XQuery expression joins both sources on the book “title” element and displays all books that are more expensive at Barns and Noble
for $b in $catalog1//book, $a in $catalog2//entry
where $b/title = $a/title and $b/price > $a/price
XQuery is also capable of manipulating free-standing XML documents similar to XSL using its FLOWR language.

The XQueryService integrates XQuery API with the ESB and allows it to feed parameters from and write output to various parts of the JMS/XQ message. Actually, the ability to take parameters from XQParts, JMS properties, and literal values (as well as writing results to JMS properties and message parts) is quite useful for many other services so this project includes a tiny framework that allows reusing that functionality.
XQuery Service Configuration File

The service is configured by providing an XML configuration file. The service allows running one or more queries against one or more documents simultaneously. Input document(s) and other input parameters can come from XPart(s), JMS properties, or literal values. Each query result is written in a separate XQPart of JMS property. The file is proprietary but the query expression is written in standard XQuery syntax. All the variables used in query expressions ($catalog1, $catalog2, $minPrice, etc) will be bound to real values from JMS properties, XQParts, and literal values. The results of each query will be placed in the JMS properties or XQParts. The mapping between parameters and message parts is defined in a separate parameter mapping XML config. The mapping was separated because it makes it easier to reuse the parameter mapping code in other services.
<x-query-service-config>
 <query>
 <expression>
 <![CDATA[
 declare variable $catalog1 as document-node(element(*, xs:untyped)) external;

 declare variable $catalog2 as document-node(element(*, xs:untyped)) external;

 declare variable $minPrice as xs:string external;

 <books-with-prices>

 {
 for $b in $catalog1//book,
 $a in $catalog2//entry
 where $b/title = $a/title and $b/price > $minPrice

 return

 <book-with-prices> { $b/title }

 <price-amazon> { $a/price/text() } </price-amazon>

 <price-bn> { $b/price/text() } </price-bn>
 </book-with-prices> }
 </books-with-prices>
]]>
 </expression>
 <output-parameter-name>price-difference</output-parameter-name>
 </query>
 … More queries (optional) …
</x-query-service-config>
Parameter Mapping
Many services may need to get input from various message parts (properties, XQParts, etc) and write the results back to message parts or properties. For instance, Sonic DB Service provides this ability (although that service comes with a custom Eclipse based editor to create mapping between message parts and the SQL parameters). All other custom services allow defining mapping between parameters and message parts on the “Interface” tab of the custom service editor. However those mappings will be the same for every instance of the service and in many cases, each instance needs to have its own mapping. The following XML file is an example of a custom mapping configuration. It defines four input parameters:
catalog1 XML document located in an XQPart with content ID “catalog1” catalog2 XML document located in the XQPart with index “1”

minPrice located in a JMS property with the same name

maxPrice set to a literal value.
The file defines two output parameters: price-difference and average-price both of which will be written to XQParts with the same name.
<parameter-mapping>
 <input name="catalog1" type="xml"

compartment-name="catalog1" compartment-type="XQPart" />
 <input name="catalog2" type="xml"
compartment-index="1" compartment-type="XQPart" />

 <input name="minPrice" type="string"

compartment-name="minPrice" compartment-type="JMSProperty" />
 <input name="maxPrice" type="string" value="11.50" />

 <output
name="price-difference"

compartment-name="price-difference"
compartment-type="XQPart" />

 <output name="average-price"
compartment-name="average-price" compartment-type="XQPart" />

</parameter-mapping>
Installing the XQ Service
· This document assumes that the custom service and related projects were imported into the Sonic Workbench

[image: image1.png]Select

Create new projects from an archiv fileor drectary.

Select an import source:

type fiter text

5 & General

G, avchive e
o2 Breakpoints.
L Existing Projects into Workspace.
5, Fle System
. preferences

Eos

& Plugin Development

& Team

& other

Click Next and follow instructions to import the project

Upload the XQueryService
· Double click on the XQueryServiceType.esbstyp file and click the “Upload the Java Service to the Sonic Domain and create a default instance” button
The file is located in src\com\democompany\soa\esb\service\xquery\customj
[image: image2.png]£ QueryserviceType.

The system will respond with the following screen

[image: image3.png]Service Configuration

Configure Service
Upload the service type ito the Sonic Domain and create a default
service instance

Service Type and Name
Service Type

Service Name ;| xQueryServicelnstance

Ink Parameters

Name Ve
configFle * sonictsworkspace/¥QueryDemo/config/4QueryDemoCon
parameterMappingFi... sonicfs:jjworkspace]QueryDemojconfigjParameterttappir

Restore Defauts

Concel

Click OK

[image: image4.png]Upload Service Type

Successfully uploaded XQueryService service type and created a default
instance QueryServicelnstance inthe container dev_ESBTest.

The cantainer st be restarted to test this service, Yould you ke o restart
the cantainer naw?

Click Yes

The services should now be visible on the Configure tab of the Management Console under the Services branch

[image: image5.png]=24 Services.
@ AccounockupService
@ BPEL service
@ Content-8ased Routing
@ Database Service Type
@ ESBUN_SetPropertyservice
@ FieDrop
@ i Pidun
@ Indextuderservice
@ Orchestraton service
@ Process Search Service
@ Queryservies
@ St and Join ForEsch Service
@ 5ot and Join Paralel Service
@ splter
@ Verficaton Service Type
@ workis service
@ L Servie Type

The endpoints are also automatically added

The remaining setup will consist of two tasks:

· Add required JARs to the classpath of the ESB (XQ) container

· Restart the dev_ESBTest runtime (MQ) container

Add Required JARs to the Classpath

On Configure tab, expand the ESB Containers collection, right click the dev_ESBTest ESB container where the service is deployed and click Properties

[image: image6.png]#] Configure | [Manage

Configured Objects

9 dev_Oserverrss
9 dev_OserverTest
9 dev MserverTest
9 Domaintanager
9 OrdersystemContainer
9 verficatonContaier
5 24 ESB Containers
@ devepeL
@ dev EsCore
dev EstTes-
¥ oyt BT
@ dev 0%l 3 pefresh

dev_x0er P
g Dicapaney O Geto Manage

@ esour _E50)

i
B OrderEntry

Letterse
IMedical
lPolcylss
IRERSery

(@ EsBlogang, Menagement Securty... b

The system will respond with the following screen

[image: image7.png]Edit Sonic ESB Contai

Resources

ner Properties

Contaner Informatian

*Mame:

*Intra-Container Messaging:

E5B (2M15) Connection;

HTTP Rouing Connection:

dev_ESBTest

jms_defaulConnection

hitp_defaultConnection

Switch to the Resources tab

The only entry that will initially be there is the custom-services-classes.jar of the XQueryService project
[image: image8.png]1 Edit Sonic ESB Container Properties

archive

Archive Name:

ESB/7.S{ESBcontainer.car

Prepend Classpath

Classpath

]

SaricfsiwarkspaceXQueryServiceflbjcustom-services-classes Jar

Remove

Mave L

Move Down

Click Add

The system will respond with the following screen

[image: image9.png][#dd Classpath.

Path:

Click … button

Select ALL jars from workspace/XQueryService/external
DO NOT select any jars from workspace/XQueryService/sonic-lib (they are provided only for building convenience, at run time they are already available by default)

[image: image10.png]Choose Classpath File

GrineBark
RERService
E5Tadaptor
Sampleservices
carchngine
5) %QuerySenvice:
settings
it
) config
52 external

<

il fikers: [jor, *war, *.2p v

Click OK

[image: image11.png]£1 Add Classpath.

Path | vefsfworkspaceyQueryServicefexternalspring.jor |]

o =]

Click OK

[image: image12.png]7 Edit Sonic ESB Container Properties

General| Resources
archive

Archive Name: | ESB{7.S/ESBeontaner.car

Prepend Classpath

Classpath
Sanicfsiwarkspace]{QueryServicefIbjcustom-services-classes Jar
sonictsjworkspace¥QueryServicejexternalfsr173_api jar
sonictsworkspace¥Queryservicejexternaljcastor-0.9.9. L jar p—
o el Cmrviomilodanaliommorsionros
sonictsjworkspace¥QueryServiefexternaljsaxong-xay.jar

saricts{fworkspace/ {QueryServicefexternaljsaxon.jar
sonictsjworkspaceQueryServicejexternaljspring jar

Click OK

Restart the dev_ESBTest Runtime (MQ) Container or start it if it is down.
[image: image13.png][l Configqure | [Manage |

Managed Objects Name

@ v eoorest

Suspend Acive Rok.
eV ST 3 Notations Shutdown

Bl vercatior > Metics GaarLog
S5 Conksners 1) pefresh Save Log o

) Goto Confiure Reset etrics
esources Properies

At this point, the setup should be complete and the project should be ready for testing
Testing

The XQueryService can be tested by configuring and running two queries (see XQueryDemo\config\XQueryDemoConfig.xml file for more details)
· The first query will join two XML documents on book title and return an XML representation of the price difference report (book name, Amazon price, Barns and Noble price). The resulting document will be placed in the price-difference parameter

· The second query will simply return the average price of books in one of the documents. The resulting document will be placed in the averageprice parameter
Those queries require the following input:

· An XML doc with a fictional book catalog from Amazon.com (catalog1)
· An XML doc with a similar book catalog from bn.com (catalog2)
· A minPrice parameter that restricts the search to books that are more expensive than the specified price

A parameter mapping configuration file that maps input and output parameters to message parts and JMS properties (see XQueryDemo\config\ParameterMapping.xmlfile for more details)
· catalog1 input parameter is mapped to an XQPart with the same Content Id

· catalog2 input parameter is mapped to an XQPart with the same Content Id

· minPrice input parameter is mapped to a JMS property with the same name
· price-difference output parameter mapped to an XQPart with the same content Id
· averageprice output parameter is mapped to a JMS property with the same name
Instructions
· Make sure that the dev_ESBTest container is running

· Use the scenario provided for the XQueryService
· Double click on the XQuyeryServiceType.esbstyp, select the XQueryServiceType_default scenario and click the Run button

[image: image14.png]- (e Jhe)s o

This scenario sends an XQueryDemo.esbmsg message to the service. This approach was chosen over the JMS Test Client because the input message has multiple parts and JMS Test Client does not allow sending multipart messages easily (as far as I know).
[image: image15.png]% Navigator 57 Containers | Package Explorer

3 ParameterMapping sl
{3 %QueryDemaConfig.xml
[classpath

4 DemoRequest.esbmsg

& settings
& bin
& config
= & external
B casor089.1r
2 commons-oggina r
B fr173_apijar
B o
B srorssaiior
B g
=40]
& sonic-lb
B src
=& com
= (& democompany
= soa
=& esh
= & service:
= il
= & customj
= parammap
[0 Porametorjova
3 ParancterConfgova
[5) Porameteriopping.ava
[3) Parametersva
5 stracexqsenvice s
[5) HQBervkcoWrParameteripping.ava
= (& exception
(3 veidatonEceptionava
[xuexcepton.ova
= ml
& castor
3 #parseriova
3]’ ParserFactory.java

[3) stringuti.java
= g

= O[3 #QueryService java

B(8]”

] ParameterConfig.java | [J] Parameters.java

Message Typet |itipart Message v
Headerf | Propertes

minPrice 10
Parts
textpxml
1 catalogz textpxml
Body:
OFrom Fi:
@it
1<pooks>
z <book id="ir>
3 <title>Java in 21 Days</title>
4 <price>41.99</price>
B <author>John Smithe/author>
6 </book>
7 <book id="z">
8 <title>The Wealth of Narions</title>
9

<price>15.99¢/price>

The following screen shows the configuration information of the scenario.
[image: image16.png]- Edit Scenario: /XQueryService/src/com/democompanylsoalesb/service/xquerylcustomj/XQueryServiceTy.

Create / Edit Scenario

RQueryServiceType_default

Scenaria Name:

Inpt | advanced

O Parameters Based (2 ESB Message

Input Type:
Select an ESB Message fl (*.esbimsg) as input.
sorictsifjworkspace/¥QueryDemofDemaRequest esbmsa

JavaSericeExecutionHandier

Run Processor

ew Dekte
E5B Service Address: XQueryServicelnstance
Duplcate] [set a5 Default

When the Run button is clicked, the system should run the service and show the output:
A couple of seconds later, the output screen should contain the message. Examine the message to find the following:
Figure1. Message properties still contains the minPrice=10

[image: image17.png]B Neme Ve

215 SonicQ_ExtendedType csopicmg-mulipart
(mPrce 10)

Part(catalogt)
@ Part Headers.

=% Part{catalog?)

Part Headers

= Part(average-price)

Part Headers

=% Part(prce-diference)
@ Part Headers.

Figure 2. Part (catalog1) contains the first input XML document

[image: image18.png]B 7 Message
@ Properties

=% Part{catalog?)
@ Part Headers.

= Part(average-price)
@ Part Headers.

=% Part(prce-diference)
@ Part Headers.

<hooks>
<hook 1d="im>
<titlesdava in 21 Days</title>
<price>41.99¢/price>
<author>John Swithe/authors
</pock>
<hook 1d="27>
<title>The Wealth of Nations</titles
<price>15.99¢/price>
<author>Adsm Swithe/authors
</pook>
</Books>

Figure 3. Part (catalog2) contains the second input XML document

[image: image19.png]prolems (STETIER seorch

Console | Progress

B 7 Message
@ Properties
@ Hoaders
=% Part(catalogt)

= Part(average-price)
Part Headers
=% Part(prce-diference)
Part Headers

<hooks>
<entry>
<title>The Wealth of Nations</titles
<price>11.1i</price>
<author>
<first-name>hdam</first-nane>
<last-name>Swith</ Last-nane>
</author>
</entry>
<entry>
<titlesCi+ Bible</titles
<price>3l.lic/price>
<author>
<first-name>Bob</first-nane>
<last-name>Johnson</ last-name>
</author>
</encry>

</Books>

Figure 4. Average price (the result of the second query)

[image: image20.png]B 7 Message <averageprice>21.11</averageprices
@ Properties

A Hoaders
=% Part(catalogt)

@ Part Headers.
=% Part{catalog?)

Figure 5. Price Difference (the result of the first query)

[image: image21.png]@ Properties. <book-with-prices>
@ Headers
= @ Part(catalogt)
=@ Part{catalog2) </book-with-prices>
@ Part Headers. </books-with-prices>

= Part(average-price)
@

